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SUMMARY

The dynamics of a mixture of impurities in a gas can be represented by a system of linear Boltzmann
equations for hard spheres. We assume that the background is in thermodynamic equilibrium and that the
polluting particles are sufficiently few (in comparison with the background molecules) to admit that there
are no collisions among couples of them. In order to derive non-trivial hydrodynamic models, we close
the Euler system around local Maxwellian’s which are not equilibrium states.

The kinetic model is solved by using a Monte Carlo method, the hydrodynamic one by implicit–explicit
Runge–Kutta schemes with weighted essentially non-oscillatory reconstruction (J. Sci. Comput. 2005;
25(1–2):129–155). Several numerical tests are then computed in order to compare the results obtained
with the kinetic and the hydrodynamic models. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we consider the motion of a dilute gas of impurities in an equilibrium background
gas. The background gas has a Maxwellian distribution with parameters determined by the Euler
equations. The impurity distributions are determined from a set of Boltzmann equations with
inelastic collisions. For a detailed discussion on the validity of the model we refer the reader
to [1–4] and the references therein. For such a model we derive suitable Monte Carlo methods
and consider the delicate problem of its approximation through a closed set of equations for the
low-order moments.

From a physical viewpoint, the model is derived by considering the dynamics of a mixture of
N species of impurities (treated as inelastic granular gases) constituted by particles with mass mi
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694 E. FERRARI AND L. PARESCHI

and diameter �i (i=1,2, . . . ,N ), which interact with a background gas constituted by molecules
with mass mb and diameter �b. If we assume the background gas in thermodynamic equilibrium
and that particle impurities are sufficiently few to ignore collisions among couple of them, we
obtain the set of N dissipative linear Boltzmann equations for hard spheres

� fi
�t

+v ·∇x fi = 1

εib

�2ib
2�

∫
R3×S2

|(v−w) ·n|
[

1

e2ib
fi (v∗)Mb(w∗)− fi (v)Mb(w)

]
dwdn

Mb(v) =
(

1

2�RbTb

)3/2

exp

{
− (v−ub)2

2RbTb

} (1)

coupled with the Euler system

��b
�t

+∇x ·(�bub) = 0

��bub
�t

+∇x ·(�bub⊗ub+�bRbTb) = 0

�Eb

�t
+∇x ·(Ebub+�bRbTbub) = 0

(2)

In the above equations, the subscript i=1, . . . ,N refers to the impurity and the subscript b denotes
the equilibrium background gas. The constant Rb is defined by Rb=kB/mb, where kB is the
Boltzmann constant. Here εib are the Knudsen numbers, �ib=(�i −�b)/2 is the distance between
the centers of the colliding particles and n∈S2 is the unit vector of impact between the velocities
v∗ and w∗ that collide returning v and w.

The pre-collisional velocities are given implicitly by relations

v = v∗−2�bi (1−�ib)[(v∗−w∗) ·n]n
w = w∗+2(1−�bi )(1−�ib)[(v∗−w∗) ·n]n (3)

with �ib=mi/(mi +mb), so that �bi =1−�ib and �ib=(1−eib)/2, where eib∈(0,1] is the coef-
ficient of restitution between impurities and background molecules (�ib=0 in the elastic case).

The linear collision operators conserve the particle number of each species of impurities and
the total momentum, but part of the kinetic energy is dissipated according to the equation

(v−w) ·n=−ei j (v∗−w∗) ·n (4)

For system (1) it is possible to prove (see [2, 3, 5]) that the stationary equilibrium states of the
collision operators are given by the Maxwellian distributions

M�
i (v)=

(
1

2�Ri T
�
i

)3/2

exp

{
− (v−ub)2

2Ri T
�
i

}
, v∈R3 (5)

having the same mean velocity of the background and temperatures

T �
i = (1−�bi )(1−�ib)

1−�bi (1−�ib)
Tb (6)

lower than the background one. Here Ri =kB/mi .
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MODELLING AND NUMERICS FOR THE DIFFUSION OF IMPURITIES IN A GAS 695

Although the methods we will describe in the sequel apply straightforwardly to the general case
of systems of impurities, for simplicity we will reduce to the case of a single type of impurity
(N =1), so that problem (1) is reduced to

� f

�t
+v ·∇x f = �2

2�ε

∫
R3×S2

|(v−w) ·n|
[
1

e2
f (v∗)Mb(w∗)− f (v)Mb(w)

]
dwdn (7)

where f = f1 is the distribution function of the impurities, �=�1b is the distance between the
centers of the colliding particles, e=e1b is the restitution coefficient in the mixed collision, ε=ε1b
is the Knudsen number and R=kB/m is a constant depending on the mass m=m1 of the particles.
We will also denote with �=�bi and �=�ib.

We remark that in this paper the interaction of the impurities with the background gas occurs
through binary collisions. If the size of the impurities is significantly larger than that of molecules
of the background, a Fokker–Planck description may be more appropriate. For example, in the
limit �→0 a Fokker–Planck equation has been derived in [6]. A different approach has been
used in [2] to study the relationship between a Boltzmann and a Fokker–Planck description of the
system. However, a detailed comparison of the validity of these different models goes beyond the
scope of the present paper.

The remainder of this paper is organized as follows: Section 2 is devoted to the problem of the
derivation of suitable hydrodynamic models for the system of impurities. Next, we introduce the
Monte Carlo method applied to the kinetic model in our simulations. Then, we describe the implicit–
explicit (IMEX) Runge–Kutta schemes used to solve the hydrodynamic models numerically. Finally,
we present some numerical tests and compare the results obtained with the two models and the
corresponding numerical methods.

2. HYDRODYNAMIC MODELS

In this section, we summarize the derivation of hydrodynamic models from the kinetic one. We
first consider the so-called pseudo-Maxwellian case, then the hard spheres case (see [3, 7, 8]).
The pseudo-Maxwellian approximation consists in replacing the relative velocity q by a different
vector S(x, t)q̄, where S is independent of the integration variables and q̄=q/|q|. For simplicity,
we assume that without loss of generality S(x, t)=1.

In both cases considered, the existence of a Maxwellian equilibrium at non-zero temperature
(5) allows one to construct hydrodynamic models for the granular flow. However, here only the
mass of the inelastic particles is preserved. Thus, the mass � is the unique hydrodynamic variable
and the Euler system is reduced to the single advection equation

��

�t
+∇x ·(�u)=0 (8)

To obtain more detailed hydrodynamic models, one can rely on different entropy functionals [9].
Here, we consider a logarithmic entropy functional [7, 9] that corresponds to perform a closure
for the moment equations by replacing f with the local Maxwellian

M(�,u,T )=
(

1

2�RT

)3/2

exp

{
− (v−u)2

2RT

}
, v∈R3
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696 E. FERRARI AND L. PARESCHI

where �, u and T are the density, mean velocity and temperature of f at time t given by

� =
∫

R3
f (v, t)dv

u = 1

�

∫
R3

v f (v, t)dv

T = 1

3R�

∫
R3

(v−u)2 f (v, t)dv

(9)

Of course, the validity of this assumption may be questionable and one of the aims of the present
paper is in fact to verify numerically the results obtained under this closure.

In order to avoid the term 1/e2 in the right-hand side of (7) and obtain the equations for the
moments, it is useful to consider the weak form of the Boltzmann equation.

Given any test-function �(v), we have

〈�,Q( f,Mb)〉= �2

2�ε

∫
R3
w×R3

v×S2
|q·n|(�(v∗)−�(v)) f (v)Mb(w)dwdvdn (10)

where 〈·, ·〉 represents the inner product in L1(R3) and the post-collisional velocity v∗ is defined
as

v∗ =v−2�(1−�)(q·n)n (11)

As usual, we choose as test functions, respectively, �=1 (which is the unique collision invariant),
�=v and �= 1

2 |v|2.
As shown in [3, 7], the weak form of the Boltzmann equation for pseudo-Maxwellian molecules

leads to the following dissipative Euler system:

��

�t
+∇x ·(�u) = 0

��u

�t
+∇x ·(�u⊗u+�RT ) = −�(1−�)

ε
��b(u−ub)

�
�t

(
�

(
1

2
|u|2+ 3

2
RT

))
+∇x ·

(
�u

(
1

2
|u|2+ 5

2
RT

))
= ��b

ε
D(x, t)

(12)

with

D(x, t)=�(1−�)(u−ub)
2−u(u−ub)−3R[1−�(1−�)](T −T �)

The quantity �( 12 |u|2+ 3
2 RT ) represents the energy E= 1

2

∫
R3 |v|2 f (v, t)dv under the assumption

of a monoatomic granular gas.
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If we apply the same procedure to the hard spheres case, we obtain

��

�t
+∇x ·(�u) = 0

��u

�t
+∇x ·(�u⊗u+�RT ) = −�(1−�)

ε
��b

√
2�(T )

�R
A(x, t)

�
�t

(
�

(
1

2
|u|2+ 3

2
RT

))
+∇x ·

(
�u

(
1

2
|u|2+ 5

2
RT

))
= �(1−�)

ε
��b

√
2�(T )

�R
B(x, t)

(13)

where

A(x, t) = 4

3

[
2R

�(T )
+ (u−ub)2

5

]
(u−ub)

B(x, t) = (u−ub)4

5

[
�(1−�)+ �(T )T

3

]
+ 4R

�(T )
(u−ub)

2
[
�(1−�)− �(T )T

3

]

− 4

15
u(u−ub)

3− 8R

3�(T )
u(u−ub)+ 8R2

�(T )2
[�(1−�)−�(T )T ]

and

�(T )= �

(1−�)Tb+�T

Remark 1
It should be noted that both the limiting models are described by conservation laws with sources.
The classical case of elastic collisions can be recovered taking �=0 and hence T � =T b. The major
difference between Maxwell and hard spheres is the nonlinear dependence from the temperature
in the relaxation terms for the mean velocity and the temperature itself.

3. HYBRID MONTE CARLO METHODS FOR THE KINETIC MODEL

In order to solve the kinetic system numerically, we consider the development of a hybrid scheme
in which we simulate the evolution of the particles according to the following methods [10]:

• The background moments �b,ub,Tb are computed using a deterministic method (finite
volume/finite differences/finite elements).

• The particle evolution is computed with a probabilistic method (direct simulation Monte
Carlo).

The two steps are connected by sampling the background velocities from the Maxwellian distri-
bution Mb=M(�b,ub,Tb). This can be done in a conservative way as in [11–13].
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698 E. FERRARI AND L. PARESCHI

During the interaction, the velocity of a particle of impurity changes following the relation

v′ =v−2�(1−�)[(v−w) ·n]n (14)

where �=�b1 and �=�1b.
Using the identity ∫

S2
(q·n)+�((q·n)n)dn= |q|

4

∫
S2

�

(
q−|q|n

2

)
dn

we can rewrite (14) as

v′ =v−�(1−�)[(v−w)−|v−w|n] (15)

The unit vector n is chosen uniformly in the unit sphere; hence, it is

n=
⎛
⎜⎝
cos�sin	

sin�sin	

cos	

⎞
⎟⎠ (16)

where 	=arccos(2
1−1) and �=2�
2, with 
1,
2 being uniformly distributed random variables
in [0,1].

The starting point of the DSMCmethods is the usual first-order splitting in time of the Boltzmann
equation (7), which consists in solving separately a purely convective step and a collision step
characterized by a space homogeneous Boltzmann equation (i.e. ∇x f ≡0). Clearly, after this
splitting, almost all the main difficulties are contained in the collision step, so that we fix our
attention on the homogeneous Boltzmann equation

� f

�t
= 1

ε
Q( f,Mb) (17)

It is equivalent to a differential system of the type

� f

�t
= 1

ε
[P( f,Mb)−� f ] (18)

where � 
=0 is a constant and P a bilinear operator.
In the space homogeneous case, the operator P( f,Mb) for variable hard spheres is given by

P( f,Mb)=Q+( f,Mb)+ f (v)
(

�−4�
∫

R3
|v−w|Mb(w)dw

)
(19)

The operator Q+( f,Mb) is the gain term of the collision operator Q( f,Mb), so that the constant
� is a bound on the loss term and has to satisfy the relation

��4�
∫

R3
|v−w|Mb(w)dw (20)

Since we deal with a finite set of particles, there is no restriction in practice by replacing the kernel
|v−w| with the bounded kernel

|v−w|� =min(|v−w|,�), �>0
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In this case, in order to satisfy (20), it is enough to choose

�=4���b

where �b is the background mass.
The classical DSMC fictitious collision method for variable hard spheres with acceptance–

rejection strategy is then applied, so that the collision between a particle of impurity, having
velocity vi , and one of background, with velocity w j , occurs only if

�
<|vi −w j |
where 
∈[0,1] is a uniformly distributed random variable and the upper bound � should be
given by

�=max
i, j

|vi −w j |

The conservative DSMC algorithm for VHS collision kernels, adapted to the mixture interaction,
can be expressed as follows.

Algorithm 1. Nambu–Babovsky for VHS molecules

1. compute the initial velocity of the particles, {v0i , i=1, . . . ,N },
by sampling them from the initial density f0(v)

2. compute the velocity of N background molecules {w0
j , j =1, . . . ,N },

by sampling them from the Maxwellian distribution Mb(w)

3. for n=1, . . . ,nT OT
given {vni , i=1, . . . ,N }
◦ compute an upper bound � of the cross section
◦ set Nc= I round(N�b��t/ε)
◦ select Nc dummy collision pairs (i, j) uniformly among all possible pairs,
and for those

∗ compute the relative cross section Bi j = B(|vi −w j |)
∗ if �
<Bi j

• perform the collision between i and j and compute v′
i according to the colli-

sional law
• set vn+1

i =v′
i

◦ set vn+1
i =vni for all the particles that have not collided

end for

The expected number of particles that collide with a background one (i.e. the number of collisions)
in a small time step �t is N�b��t/ε. I round(x) denotes a suitable integer rounding of a positive
real number x .
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The computation of the upper bound �, if N is the number of colliding couples, requires O(N 2)

operations. However, taking the larger bound

�=max
i

|vi − ū|+max
j

|w j − ūb|+|ū− ūb|

we can reduce the computational cost at O(N ). Here, we denote the mean velocities, respectively,
of the background and the impurities by ūb and ū.

We refer to [14] and references therein for further details on the DSMCmethod for the Boltzmann
equation.

4. IMEX-WENO SCHEMES FOR THE FLUID MODEL

To solve numerically the hydrodynamic models (12) and (13) we apply the IMEX Runge–Kutta
schemes up to the third order [15]. These schemes are strong-stability-preserving (SSP) for the
limiting system of conservation laws in the limit of vanishing Knudsen number. These schemes
assure the asymptotic preserving property, i.e. the consistency of the scheme with the equilibrium
system and the asymptotic accuracy, so that the order of accuracy is also maintained in the zero
relaxation limit. The high accuracy in space is obtained by using a weighted essentially non-
oscillatory (WENO) reconstruction [16].

Let us summarize shortly the construction of such schemes.

4.1. IMEX Runge–Kutta schemes

In one-space dimension, a hyperbolic system with relaxation for conservative variables has the
form

�tU+�x F(U )= 1

ε
R(U ), x ∈R (21)

The Jacobian matrix F ′(U ) has real eigenvalues and admits a basis of eigenvectors ∀U ∈Rn . ε is
the relaxation parameter.

An IMEX Runge–Kutta scheme consists in applying an implicit discretization to the source
terms and an explicit one to the non-stiff term. When applied to the previous system, it takes the
form

U (i) = Un−�t
i−1∑
j=1

ãi j�x F(U ( j))+�t
�∑

j=1
ai j

1

ε
R(U ( j))

Un+1 = Un−�t
�∑

i=1
w̃i�x F(U (i))+�t

�∑
i=1

wi
1

ε
R(U (i))

(22)

The matrices Ã=(ãi j ), ãi j =0 for j�i and A=(ai j ) are �×� matrices such that the resulting
scheme is explicit in F and implicit in R. An IMEX Runge–Kutta scheme is characterized by
these two matrices and the coefficient vectors w̃=(w̃1, . . . , w̃�)

T and w=(w1, . . . ,w�)
T.

Since the simplicity and efficiency of solving the algebraic equations corresponding to the
implicit part of the discretization at each step are of paramount importance, it is natural to consider
diagonally implicit Runge–Kutta (DIRK) schemes for the source terms (ai j =0, for j>i).
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Table I. Tableau for the explicit (left) and implicit (right) IMEX-SSP2(2,2,2) L-stable scheme.

0 0 0

1 1 0

1/2 1/2

  0

1− 1−2 

1/2 1/2

=1− 1√
2

Table II. Tableau for the explicit (left) and implicit (right) IMEX-SSP3(4,3,3) L-stable scheme.

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

� � 0 0 0

0 −� � 0 0

1 0 1−� � 0

1/2 � � 1/2−�−�−� �

0 1/6 1/6 2/3

�=0.24169426078821, �=0.06042356519705 �=0.12915286960590

IMEX Runge–Kutta schemes can be represented by a double tableau in the usual Butcher
notation,

c̃ Ã

w̃T

c A

wT

where the coefficients c̃ and c used for the treatment of non-autonomous systems are given by the
usual relation

c̃i =
i−1∑
j=1

ãi j , ci =
i∑

j=1
ai j (23)

The use of a DIRK scheme for R is a sufficient condition to guarantee that F is always evaluated
explicitly.

In all the schemes we have considered that the implicit tableau corresponds to an L-stable
scheme, that is, wTA−1e=1, e being a vector whose components are all equal to 1, whereas the
explicit tableau is SSPk, where k denotes the order of the SSP scheme. We shall use the notation
SSPk(s,�, p), where the triplet (s,�, p) characterizes the number s of stages of the implicit scheme,
the number � of stages of the explicit scheme and the order p of the IMEX scheme.

In particular, we will make use of the asymptotically SSP schemes of second and third order
reported in Tables I and II.
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4.2. Finite difference IMEX-WENO schemes

For simplicity, we consider the case of the single scalar equation

ut + f (u)x = 1

ε
r(u) (24)

It is necessary to distinguish between schemes based on cell averages (finite volume approach,
widely used for conservation laws) and schemes based on point values (finite difference approach).
In this work we apply the second approach, useful even if the implicit step cannot be explicitly
solved.

Let �x and �t be the mesh widths. We introduce the grid points

x j = j�x, x j+1/2= x j + 1
2�x, j = . . . ,−2,−1,0,1,2, . . .

and use the standard notations

unj =u(x j , t
n), ūnj =

1

�x

∫ x j+1/2

x j−1/2

u(x, tn)dx

In a finite difference scheme, the basic unknown is the pointwise value of the function, rather
than its cell average. Osher and Shu observed that it is possible to write a finite difference scheme
in conservative form [17]. Let us consider Equation (24) and express

� f

�x
(u(x, t))=

f̂

(
u

(
x+ �x

2
, t

))
− f̂

(
u

(
x− �x

2
, t

))
�x

The relationship between f and f̂ is as follows. Let us consider the sliding average operator

ū(x, t)=〈u〉x ≡ 1

�x

∫ x+�x/2

x−�x/2
u(
, t)d


Differentiating with respect to x one obtains

�ū
�x

= 1

�x

(
u

(
x+ �x

2
, t

)
−u

(
x− �x

2
, t

))

Therefore, the relationship between f and f̂ is the same as that exists between ū(x, t) and u(x, t),
namely, flux function f is the cell average of the function f̂ . This also suggests a way to compute
the flux function. The technique that is used to compute pointwise values of u(x, t) at the edge
of the cell from cell averages of u can be used to compute f̂ (u(x j+1/2, t)) from f (u(x j , t)).
This means that in the finite difference method it is the flux function that is computed at x j and
then reconstructed at x j+1/2. But the reconstruction at x j+1/2 may be discontinuous. Which value
should one use? A general answer to this question can be given if one considers flux functions
that can be split

f (u)= f +(u)+ f −(u) (25)

with the condition that

d f +(u)

du
�0,

d f −(u)

du
�0 (26)
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There is a close analogy between flux splitting and numerical flux functions. In fact, if a flux can
be split as (25), then

F(a,b)= f +(a)+ f −(b)

will define a monotone consistent flux, provided condition (26) is satisfied. Together with non-
oscillatory reconstructions (such as WENO) and SSP time discretization, the monotonicity condi-
tion will ensure that the overall scheme will not produce spurious numerical oscillations [15]. This
is the case of the local Lax–Friedrichs flux with conservative variables used in this paper.

A finite difference scheme therefore takes the following form:

du j

dt
=− 1

�x
[F̂j+1/2− F̂j−1/2]+ 1

ε
g(u j )

F̂j+1/2= f̂ +(u−
j+1/2)+ f̂ −(u+

j+1/2)

f̂ +(u−
j+1/2) is obtained by

• computing f +(ul) and interpreting it as cell average of f̂ +;
• performing pointwise reconstruction of f̂ + in cell j and evaluating it in x j+1/2.

f̂ −(u+
j+1/2) is obtained by

• computing f −(ul) and interpreting it as cell average of f̂ −;
• performing pointwise reconstruction of f̂ − in cell j+1 and evaluating it in x j+1/2.

The treatment presented for the scalar equation can be extended to systems, with a minor change
in notation. A detailed account on high-order finite difference schemes can be found in [16].
Remark 1
Let us finally remark that because of the non-linearity of the terms A(x, t) and B(x, t) in (13), the
corresponding implicit solver has been solved by using a Newton’s method.

5. NUMERICAL TESTS

We are interested in comparing the results obtained with the kinetic model and the hydrodynamic
model (13) in the case of hard spheres.

The tests presented in this section differ for the initial condition of the impurities, whereas the
background for simplicity is assumed to be constant, with mass, mean velocity and temperature
given by

�b=ub=Tb=1

All the results refer to �=0.01 and �=0.1. In all the graphics presented in this section, we plot
the initial condition for the DSMC together with the solution obtained by DSMC and the solution
with IMEX-SSP2(2,2,2) and/or IMEX-SSP3(4,3,3).
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5.1. Inert concentration of impurities

In the first test case we consider a concentration of impurities, transported by a constant wind in
1-D. The evolution is studied for different values of the Knudsen number, namely

ε=0.1,0.005,0.0001

The mass density of the impurities consists in a square wave profile characterized by �=1
for 0.2�x�0.4 and �=0 elsewhere. The mean velocity is assumed to be zero (u=0) and the
temperature to be small (T =0.05). The boundary conditions are periodic.

As shown in Figures 1–6, there is good agreement between the results obtained with the different
models for all ranges of Knudsen numbers.
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Figure 1. Test 1—evolution of the mass density with ε=0.1 (a) and ε=0.005 (b).
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Figure 2. Test 1—evolution of the velocity with ε=0.1 (a) and ε=0.005 (b).
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Figure 3. Test 1—evolution of the temperature with ε=0.1 (a) and ε=0.005 (b).
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Figure 4. Test 1—evolution of the mass density with ε=0.0001.

When the value of ε decreases, the equilibrium conditions u=ub and T =T � are achieved faster.
In particular, when ε=10−4 the equilibrium is reached in a few time steps and the impurities are
just transported with velocity ub and temperature T �. In this case (Figures 4–6) we also report the
results of the third-order IMEX-SSP3(4,3,3) schemes which clearly shows the better resolution
of the discontinuity.
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Figure 5. Test 1—evolution of the velocity with ε=0.0001.
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Figure 6. Test 1—evolution of the temperature with ε=0.0001.

5.2. Concentrations of impurities with different mean velocities

In this test we consider two concentrations of impurities characterized, respectively, by �=1 for
0.1�x�0.3 and �=0.6 for 0.5�x�0.7 (�=0 elsewhere), the first one having zero mean velocity
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Figure 7. Test 2—evolution of the mass density with ε=0.1 at t=1 and 2.
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Figure 8. Test 2—evolution of the velocity with ε=0.1 at t=1 and 2.

and the second one having negative mean velocity. The initial condition for velocity and temperature
corresponds to a shock profile, with the following left- and right-hand side values:

ul=0, Tl=0.2 and ur=−0.15, Tr=0.1

The boundary conditions are characterized by a zero flux and the evolution is studied for

ε=0.1,0.001

We present in Figures 7–9 the results for ε=0.1 at the instants t=1 and 2, and in Figures 10–12
the results for t=0.2 when ε=0.001. In this last case we show the results obtained with IMEX-
SSP3(4,3,3) instead of IMEX-SSP2(2,2,2). Again there is good agreement between the two
numerical solutions even for large values of the relaxation rate �.
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Figure 9. Test 2—evolution of the temperature with ε=0.1 at t=1 and 2.
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Figure 10. Test 2—evolution of the mass density with ε=0.001 at t=0.2.

5.3. Shock waves profiles

We finally consider a Riemann problem. In particular, we have chosen the classical Lax data

�l=0.445, (�u)l=0.311, El=8.928 and �r=0.5, (�u)r=0, Er=1.4275

We still consider zero-flux conditions on the boundary. We present in Figures 13–18 the pictures
of the solutions for the moments �,�u,E at t=15 and 30 for ε=1 and at t=1 and 2 for ε=0.01.
Good agreement of the two models is also observed in this case.
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Figure 11. Test 2—evolution of the velocity with ε=0.001 at t=0.2.
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Figure 12. Test 2—evolution of the temperature with ε=0.001 at t=0.2.
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Figure 13. Test 3—evolution of the mass density with ε=1 at t=15 and 30.
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Figure 14. Test 3—evolution of the velocity with ε=1 at t=15 and 30.
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Figure 15. Test 3—evolution of the temperature with ε=1 at t=15 and 30.
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Figure 16. Test 3—evolution of the mass density with ε=0.01 at t=1 and 2.
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Figure 17. Test 3—evolution of the velocity with ε=0.01 at t=1 and 2.
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Figure 18. Test 3—evolution of the temperature with ε=0.01 at t=1 and 2.
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6. CONCLUSIONS

In this paper we have presented some recent results on the modelling of the diffusion of impurities
in a gas. The main goal of using hydrodynamic models is the possibility to strongly reduce the
computational cost of the full kinetic model. This is especially true when the mean free path of
the particles is small.

We have introduced a Monte Carlo scheme that is suitable for the solution of the kinetic model
and an IMEX-WENO method for the solution of the hydrodynamic one. For such a model the
time step is independent of the mean free path between particles.

For the test cases considered here, the results obtained with the hydrodynamic model (13) are
very close to the ones of the kinetic model. This is very promising for future application based on
the fluid model.

The hydrodynamic model presented in this paper is derived using a logarithmic entropy func-
tional. As described in [9] this is not the unique possibility. The choice of a quadratic entropy
functional and the comparison of the corresponding model with the kinetic one are under investi-
gation.

Finally, we hope to extend the schemes to models including some simple chemical reactions.
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